

Studuino 功能庫

功能參考

Published 2014/11/01

Revised 2018/02/01

1

版本歷史

日期 內容

2014/11/01 首個版本

2017/01/16 就新的 Studuino 網站作更新

2017/08/16 在程式範例中,將 Stduino.h 更改為 Studuino.h

2018/02/01 修訂文本

2022/06/07 中文版本

2

目錄

1. 入門 .. 3

2. 功能 .. 3

2.1. 初始化功能 .. 3

2.2. 直流馬達功能 .. 7

2.3. 伺服馬達功能 .. 9

2.4. 蜂鳴器功能 ... 11

2.5. LED 功能 ... 13

2.6. 輸入功能 ... 14

2.7. 定時器功能 ... 20

2.8. Studuino mini 功能 ... 21

2.9. 常數 .. 26

3. 編程 .. 29

3.1. Arduino 語言 .. 29

3.2. Studuino 物件 .. 29

3.3. 包括標頭檔 ... 29

3.4. 編程示例 .. 30

3.4.1. 直流馬達 ... 30

3.4.2. 伺服馬達 .. 31

3.4.3. 蜂鳴器 .. 32

3.4.4. LED .. 33

3.4.5. 感應器 ... 34

A. 將直流馬達連接到 Studuino ... 39

3

1. 入門
本手冊涵蓋了 Studuino 在 Arduino IDE 中使用到的 Studuino 功能庫及 ArtecRobo 電子部件

所需的功能, 包括直流馬達及伺服馬達, 以供編程之用。

手冊內容將跟據軟件更新而作出改動。

2. 功能
功能描述將採用以下格式：

功能名稱: (功能名稱)

參數 (類型) (變數名稱) (值) (描述)

回傳值 (類型) (描述)

備註

2.1. 初始化功能
功能名稱: SetDCMotorCalibration

參數 byte[2] 速度 0 ~ 100 偏移值

回傳值 無

您只需要使用此功能來調整直流馬達的速度。

此功能用作調整直流馬達的速度。更改 rate [0] 的參數值以控制 M1 直流馬達的速度,

更改 rate [1] 的參數值以控制 M2 直流馬達的速度。

(例子)

// 將 M1 直流馬達的最高速度設定為 80%

// 將 M2 直流馬達的最高速度設定為 100%

byte calib[] = { 80, 100 };
SetDCMotorCalibration(calib); // 直流馬達速度校准設定

4

功能名稱: SetServomotorCalibration

參數 char[8] 偏移角度 -15 ~ 15 偏移值

回傳值 無

此功能僅用於調整伺服馬達的初始角度。

此功能調整伺服馬達的角度。 更改偏移值 [0] ~ [7] 中的參數值以指定 D2 ~ D12 上相應伺服

馬達的角度。

(例子)

//指定連接到 D9 ~ D12 的伺服馬達

byte calib[] = { 0, 0, 0, 0, -6, 0, 12, 3 }; // 角度: D9(-6°), D10(0°), D11(12°), D12(3°)

SetServomotorCalibration(calib); //伺服馬達速度校准設定

功能名稱: InitDCMotorPort

參數 byte 端口 PORT_M1 端口

PORT_M2

回傳值 無

此功能初始化一個直流馬達端口。 在使用直流馬達前，請使用此功能初始化端口。

(例子)

// 使 用 此 功 能 初 始 化 端 口 後 , 才 可 使 用 功 能 Move, DCMotor, DCMotorPower 或

DCMotorControl functions
InitDCMotorPort(PORT_M1); //初始化端口 M1 以用於直流馬達

功能名稱: InitServomotorPort

參數 byte 端口 見 CH2.9 * 1 端口

回傳值 無

此功能初始化一個伺服馬達端口。 在使用伺服馬達前，請使用此功能初始化端口。

(例子)

// 使 用 此 功 能 初 始 化 端 口 後 , 才 可 使 用 功 能 Servomotor, SyncServomotors 或

AsyncServomotors
InitServomotorPortPORT_D2); // 初始化端口 D2 以用於伺服馬達

5

功能名稱: InitServomotorPortForLED

參數 byte 端口 PORT_D9 端口

PORT_D10

PORT_D11

回傳值 無

初始化伺服馬達端口 D9、D10 或 D11 以使用 LED。 在調整 D9、D10 或 D11 上的 LED

亮度之前，使用此功能初始化端口。

(例子)

//使用此功能初始化端口後,才可使用功能 Gradation

InitServomotorPortForLEDPORT_D9); // 初始化端口 D9 以與 LED 一起使用

Gradation(PORT_D9, 128);

功能名稱: InitSensorPort

參數 byte 端口 見 CH2.9 * 4 端口

byte 部件 ID 見 CH2.9 * 5 部件

回傳值 無

此功能初始化傳感器、蜂鳴器或 LED 的端口。 在將端口與傳感器、蜂鳴器或 LED 一起使

用之前，使用此功能初始化端口。

(例子)

// 使用此功能初始化端口後,才可使用功能 Buzzer, BuzzerControl, Melody, LED 或 Get*

InitSensorPort(PORT_A0, PIDLED); //初始化端口 A0 以與 LED 一起使用

6

功能名稱: InitSensorPort

參數 byte 端口 1 見 CH2.9 * 4 端口

byte 端口 2 見 CH2.9 * 4 端口

byte 部件 ID 見 CH2.9 * 5 部件

回傳值 無

此功能初始化超聲波傳感器的端口。 在將端口與超聲波傳感器一起使用之前，使用此功能初

始化端口。

(例子)

InitSensorPort(PORT_A0, PORT_A1, PIDULTRASONICSENSOR); // 初始化端口 A0 和

A1 以用於超聲波傳感器

功能名稱: InitI2CPort

參數 byte 部件 ID 見 CH2.9 * 5 部件 (僅限 I2C 設備)

回傳值 無

此功能初始化 I2C 端口（A4、A5）。 在將端口與 I2C 設備一起使用之前，使用此功能初始

化端口。

(例子)

InitI2CPort(PIDACCELEROMETER); //初始化 I2C 端口以與速度感應器一起使用

功能名稱: InitBluetooth

參數 無

回傳值 無

通過藍牙打開串行連接。串口初始傳輸速率: 9600

此功能支援以下 2 藍牙個模組:

RBT-001 Bluetooth Module (product #86873)
Bluetooth Module for Robots (product #86876）

(例子)

InitBluetooth(); // 初始化藍牙

7

2.2. 直流馬達功能
本節介紹用於控制直流馬達的功能。

功能名稱: Move

參數 byte 方向 FORWARD 直走

BACKWARD 倒退

FORWARD_RIGHT 右轉（前）

FORWARD_LEFT 左轉（前）

BACKWARD_RIGHT 右轉（後）

BACKWARD_LEFT 左轉 (後)

CLOCKWISE 順時針轉動

COUNTERCLOCKWISE 逆時針轉動

byte 速度 0 ~ 255 速度

ulong 時間 0 ~ 2^32-1 時間（毫秒）

byte 剎車 BRAKE 使用剎車

COAST 解除剎車

回傳值 無

此功能用於控制使用汽車運動的兩個直流馬達。 直流馬達需要以特定方式連接到板上才能使

用。詳情請見”將直流馬達連接到 Studuino “(p.43)

(例子)

Move (FORWARD, 10, 1000, BRAKE); // 汽車以 10 速向前行駛 1 秒後停止

8

功能名稱: DCMotor

參數 byte 端口 PORT_M1 端口
PORT_M2

byte 轉向 NORMAL 向前

REVERSE 向後

byte 速度 0 ~ 255 速度

ulong 時間 0 ~ 2^32-1 時間（毫秒）

byte 剎車 BRAKE 使用剎車

COAST 解除剎車

回傳值 無

此功能控制單個直流馬達。

(例子)

// 使 M1 上的直流馬達以 10 的速度旋轉一秒鐘並停止

DCMotor (PORT_M1, NORMAL, 10, 1000, BRAKE);

功能名稱: DCMotorPower

參數 byte 端口 PORT_M1 端口
PORT_M2

byte 速度 0 ~ 255 速度

回傳值 無

此功能控制單個直流馬達的速度。

(例子)

// 使 M1 直流馬達以 10 速旋轉一秒，以 100 速旋轉一秒，然後停止

DCMotorPower(PORT_M1, 10); // 設定 M1 直流馬達的速度

DCMotorControl(PORT_M1, CLOCKWISE); // 設定 M1 直流馬達以順時針方向轉動

Timer(1000); // 計時一秒

DCMotorPower(PORT_M1, 100); // 更改 M1 直流馬達的速度

Timer(1000); // 計時一秒

DCMotorControl(PORT_M1, BRAKE); // 剎停 M1 直流馬達

功能名稱: DCMotorControl

參數

byte 端口 PORT_M1 端口
PORT_M2

byte 轉向 NORMAL 向前

REVERSE 向後

BRAKE 使用剎車

COAST 解除剎車

回傳值 無

此功能控制直流馬達的轉向。

(例子)

//使 M1 直流馬達以 10 速旋轉一秒，然後停止

DCMotorPower(PORT_M1, 10); // 設定 M1 直流馬達的速度

DCMotorControl(PORT_M1, CLOCKWISE); // 設定 M1 直流馬達以順時針方向轉動

9

Timer(1000); // 計時一秒

DCMotorControl(PORT_M1, BRAKE); // 剎停 M1 直流馬達

2.3. 伺服馬達功能

本節介紹用於控制伺服馬達的功能。

功能名稱: Servomotor

參數

byte 端口 見 CH2.9 * 1 端口

byte 角度 0 ~ 180 伺服馬達角度

回傳值 無

設定一個伺服馬達角度。程式中的下一個過程將會使伺服電機轉動。

(例子)

//將 D2 上的伺服馬達設定為 90 度

Servomotor (PORT_D2, 90);

功能名稱: AsyncServomotors

參數

byte[] 端口 見 CH2.9 * 1 端口排列

byte[] 角度 0 ~ 180 每個伺服馬達的角度

byte 數量 1 ~ 8 伺服馬達數量

回傳值 無

設定多個伺服馬達角度。 程式中的下一個過程將會使伺服電機轉動。

(例子)

//將 D2、D9 和 D10 上的伺服馬達設定為 90、180 和 45 度

byte myConnectors[] = { PORT_D2, PORT_D9, PORT_D10 };
byte myDegrees[] = { 90, 180, 45};
ASyncServomotor (myConectors, myDegrees, 3);

功能名稱: SyncServomotors

參數

byte[] 端口 見 CH2.9 * 1 端口排列

byte[] 角度 0 ~ 180 每個伺服馬達的角度

byte 數量 1 ~ 8 伺服馬達數量

byte 時間 3 ~ 255 每度轉動時間 (毫秒)

回傳值 無

設定多個伺服馬達角度。程式將等待所有伺服馬達旋轉到指定的角度，才會運行其他程式。

時間參數價愈大，則伺服馬達旋轉愈慢。請注意，每度旋轉的最大速度為 3 毫秒，若時間參

數少於 3，伺服馬達則只會以每度 3 毫秒旋轉。

(例子)

//將 D2、D9 和 D10 上的伺服馬達設定為 90、180 和 45 度

byte myConectors[] = { PORT_D2, PORT_D9, PORT_D10 };
byte myDegrees[] = { 90, 180, 45};
SyncServomotor (myConectors, myDegrees, 3, 5);

10

11

2.4. 蜂鳴器功能
本節介紹用於控制蜂鳴器的功能。

功能名稱: Buzzer

參數

byte 端口 見 CH2.9 * 3 端口

word 音調 見 CH2.9 * 6 音符

ulong 時間 0 ~ 2^32-1 持續時間(毫秒)

回傳值 無

在指定的時間段內播放蜂鳴器中的音符。

(例子)

Buzzer (PORT_A0, BZR_C4, 1000); //使用蜂鳴器 A0 播放音符“Do”一秒鐘

功能名稱: BuzzerControl

參數

byte 端口 見 CH2.9 * 3 端口

boolean 開關 ON 播放聲音

OFF 停止播放聲音

byte 音調 見 CH2.9 * 6 音符

回傳值 無

將參數 onoff 設定為 ON 將使蜂鳴器以指定的音高播放一個音符。 將其設定為 OFF 將

忽略原有參數並停止蜂鳴器。

(例子)

// 使用蜂鳴器 A0 播放音符“Do”一秒鐘

BuzzerControl(PORT_A0, ON, BZR_C4);
Timer(1000);
BuzzerControl(PORT_A0, OFF, 0);

12

功能名稱: Melody

參數

byte 端口 見 CH2.9 * 3 端口

word[] 音調 見 CH2.9 * 6 音符

float[] 節拍 0 ~ 節拍

byte 數量 Melody number 音符數量

byte 節奏 TEMPO60 節奏
TEMPO90

TEMPO120

TEMPO150

回傳值 無

使用蜂鳴器播放旋律。

(例子)

//使用蜂鳴器 A0 播放 Do、Re、Mi、Fa、Mi、Re、Do

word myPitches[] = { BZR_C3, BZR_D3, BZR_E3, BZR_F3,
BZR_E3, BZR_D3, BZR_C3 };

float myBeats[] = { 1, 1, 1, 1, 1, 1, 1 };
byte num = 7; //音符數量

Melody (PORT_A0, myPitches, myBeats, num, TEMPO90);

13

2.5. LED 功能

本節介紹用於控制 LED 的功能。

功能名稱: LED

參數

byte 端口 見 CH2.9 * 3 端口

boolean 開關 ON LED 開關
OFF

回傳值 無

打開或關閉 LED。

(例子)

LED (PORT_A0, ON); //打開 A0 上的 LED

功能名稱: Gradation

參數

byte 端口 PORT_D9 端口
PORT_D10

PORT_D11

byte 比率 0 ~ 255 亮度（數值越高越亮）

回傳值 無

調整連接到端口 D9、D10 或 D11 的 LED 的亮度。

(例子)

Gradation (PORT_D9, 128); // 設定 D9 上 LED 的亮度

14

2.6. 輸入功能
本節介紹用於按鈕和感應器的功能。

功能名稱: GetPushSwitchValue

參數 byte 端口 見 CH2.9 * 2 端口

回傳值 byte 0：按下，1：釋放

取得按鈕的狀態。

(例子)

// 獲取 A0 按鈕的值

byte val = GetPushSwitchValue (PORT_A0);

功能名稱: GetTouchSensorValue

參數 byte 端口 見 CH2.9 * 3 端口

回傳值 byte 0：按下，1：釋放

取得接觸式感應器的狀態。

(例子)

//獲取 A0 接觸式感應器的值

byte val = GetTouchSensorValue (PORT_A0);

功能名稱: GetLightSensorValue

參數 byte 端口 見 CH2.9 * 4 端口

回傳值 int 0 ~ 1023

取得光感應器的狀態。

(例子)

int val = GetLightSensorValue (PORT_A0); // 獲取 A0 光感應器的值

功能名稱: GetSoundSensorValue

參數 byte 端口 見 CH2.9 * 4 端口

回傳值 int 0 ~ 1023

取得聲音感應器的狀態。

(例子)

int val = GetSoundSensorValue (PORT_A0); //獲取 A0 聲音感應器的值

功能名稱: GetIRPhotoreflectorValue

參數 byte 端口 見 CH2.9 * 4 端口

回傳值 int 0 ~ 1023

15

取得紅外光反射器的狀態。

(例子)

//獲取 A0 紅外光反射器的值

int val = GetIRPhotoreflectorValue (PORT_A0);

功能名稱: GetAccelerometerValue

參數 byte 軸 X_AXIS 加速度方向
Y_AXIS

Z_AXIS

回傳值 int -128 ~ 127

取得加速度感應器的值。加速度感應器只能與 A4/A5 上的 I2C 端口一起使用。

(例子)

int val = GetAccelerometerValue (X_AXIS); // 沿 X 軸取得加速度感應器傾斜

功能名稱: GetTemperatureSensorValue

參數 byte 端口 見 CH2.9 * 5 端口

回傳值 int 0 ~ 1023

取得溫度感應器的值。

(例子)

int val = GetTemperatureSensorValue(PORT_A0); //獲取 A0 溫度感應器的值

double temperature = ((((val / 1024.0) * 3.3) - 0.5) / 0.01); //將溫度轉換為攝氏度

功能名稱: GetUltrasonicSensorValue

參數 byte 引發器 見* 4 端口

byte 接收器 見* 4 端口

回傳值 unsigned long 超聲波來回所需的時間（以微秒為單位）

取得超聲波感應器的值。回傳值記錄由 triggerPin 發射的超聲波被 echoPin 拾取所需的時

間（以微秒為單位）

(例子)

unsigned long val = GetUltrasonicSensorValue(PORT_A0, PORT_A1); //取得超聲波感應

器的值

double dist = val / 58.0; // 將距離轉換為厘米

58 = 29[us/cm] * 2：將聲音傳播一厘米所需的時間（以微秒為單位）乘以 2（往返一次）

* 4: p.29

功能名稱: GetGyroscopeValue

參數 byte 軸 X_AXIS 加速度方向

Y_AXIS

Z_AXIS

GX_AXIS 角速度方向
GY_AXIS

16

GZ_AXIS

回傳值 int -32768 ~ 32767

取得陀螺儀的加速度和角速度。 陀螺儀只能與 A4/A5 上的 I2C 端口一起使用。

(例子)

int val = GetGyroscopeValue(GX_AXIS); // 取得沿陀螺儀 X 軸的角速度

功能名稱: GetIRReceiverValue

參數 無

回傳值 unsigned long 紅外線訊號值

取得紅外線接收器的值。

(例子)

unsigned long val = GetIRReceiverValue(); //取得紅外線接收器的值。

功能名稱: DisableIRReceiver

參數 無

回傳值 無

停用紅外線接收器。 在使用 M1 上的直流馬達或同一程序中的蜂鳴器之前，您需要使用此

功能停用紅外線接收器。

(例子)

board.DisableIRReceiver(); // 停用紅外線接收器

board.Move(BACKWARD, DCMPWR(10), 500, COAST); //使用直流馬達

board.EnableIRReceiver(); // 啟用紅外線接收器

功能名稱: EnableIRReceiver

參數 無

回傳值 無

停用紅外線接收器。 在使用 M1 上的直流馬達或同一程序中的蜂鳴器之前，您需要使用此

功能停用紅外線接收器。

(例子)

board.DisableIRReceiver(); // 停用紅外線接收器

board.Move(BACKWARD, DCMPWR(10), 500, COAST); //使用直流馬達

board.EnableIRReceiver(); // 啟用紅外線接收器

17

功能名稱: GetColorSensorValue

參數

byte 軸 VALUE_RED 被測顏色的組成

VALUE_GREEN

VALUE_BLUE

VALUE_CLEAR

回傳值 Unsigned int 被測顏色的組成

取得顏色感應器的值。 通過使用紅色、綠色、藍色和透明濾鏡（無濾鏡）返回檢測到的光的

顏色成分。

(例子)

unsigned int sv = GetColorSensorValue(VALUE_RED); // 取得顏色感應器檢測到的紅色成

分

功能名稱: GetColorSensorXY

參數

double* x 用於存儲顏色坐標的 x 值

double* y 用於存儲顏色坐標的 y 值

回傳值 無

取得顏色感應器檢測到的顏色成分轉換為顏色坐標的結果。 這些結果存儲為 x 和 y 值。

(例子)

double x, y; //設變數存儲數值

GetColorSensorXY(&x, &y); //取得顏色坐標並將它們存儲到 x 和 y

18

功能名稱: GetColorCode

參數 無

回傳值 byte COLOR_UNDEF 無法定義的顏色

COLOR_RED 紅色的

COLOR_GREEN 綠色的

COLOR_BLUE 藍色的

COLOR_WHITE 白色的

COLOR_YELLOW 黃色

COLOR_BROWN 棕色的

COLOR_BLACK 黑色的

確定 Artec Block 是紅色、綠色、藍色、白色、黃色、棕色還是黑色，並返回相應的值。

(例子)

int sv = board.GetColorCode(); // 回傳 Artec Block 的顏色值

功能名稱: UpdateBluetooth

參數 無

回傳值 boolean 數據接收狀態

嘗試從藍牙控制器應用程序接收數據，如果接收到數據則返回 TRUE，否則返回 FALSE。

(例子)

board.UpdateBluetooth();
boolean fID1 = board.GetBTCommandIDState(BT_ID_01); //檢查應用程序中分配給 ID01 的

按鈕是否被按下

if(fID1 == true) {
 // 如果按下按鈕

}

19

功能名稱: GetBTCommandIDState

參數 byte id BT_ID_01 ~ BT_ID_10, BT_ID_ACC

回傳值 boolean 檢查是否啟用了 Bluetooth ID 和加速度感應器

從 UpdateBluetooth 的值中檢索指定命令 ID 的狀態。

目標 ID 回傳值

屏幕按鈕 BT_ID_01 ~ BT_ID_10 TRUE: 開

FALSE: 關

加速度感應器 BT_ID_ACC TRUE: 啟用

FALSE: 停用

(例子)

board.UpdateBluetooth();
boolean fID1 = board.GetBTCommandIDState(BT_ID_01); //檢查應用程序中分配給 ID01 的

按鈕是否被按下

if(fID1 == true) {
 //如果按下按鈕

}

功能名稱: GetBTAccelValue

參數

byte 軸 X_AXIS 加速度方向

Y_AXIS

Z_AXIS

回傳值 無

在使用 UpdateBluetooth 接收數據後取得加速度感應器的值。

(例子)

board.UpdateBluetooth();
boolean fAcc = board.GetBTCommandIDState(BT_ID_ACC); //確定是否在應用程序內部啟

用了加速度感應器

int sv = board.GetBTAccelValue(X_AXIS); // 取得加速度感應器的 X 加速度

if(fAcc & (sv > 0)) {
 // 加加速度感應器啟用且 X 加速度為 True 時運行

}

20

2.7. 定時器功能
本節介紹等待指定時間的功能

功能名稱: Timer

參數

unsigned long 時間 0 ~ 2^32-1 時間(毫秒)

回傳值 無

使進程停止指定的時間。

(例子)

Timer(1000); // 閒置一秒

21

2.8. Studuino mini 功能

以下功能只能與 Studuino mini 一起使用。

功能名稱: InitClock

參數 無

回傳值 無

初始化 LCD 時鐘的端口。

功能名稱: setTime

參數 byte 小時 0 ~ 23 小時

byte 分鐘 0 ~ 59 分鐘

回傳值 無

設置 LCD 時鐘的時間。

(例子)

board.setTime(9, 0);

功能名稱: setDate

參數 unsigned
int

年 2000 ~ 2040 年

byte 月 1 ~ 12 月

byte 日 1 ~ 31 日

回傳值 無

設置 LCD 時鐘的日期。

(例子)

board.setDate(2016, 4, 1);

功能名稱: setAlarm

參數 byte 小時 0 ~ 23 小時

byte 分鐘 0 ~ 59 分鐘

回傳值 無

為 LCD 時鐘設置鬧鐘。

(例子)

board.setAlarm(9, 0);

22

功能名稱: setBackLight

參數 byte 紅色 0 ~ 15 16 級從 0 [暗] 到 15 [亮]

byte 綠色 0 ~ 15 16 級從 0 [暗] 到 15 [亮]

byte 藍色 0 ~ 15 16 級從 0 [暗] 到 15 [亮]

回傳值 無

更改 LCD 時鐘的背光顏色。

(例子)

board.setBackLight(15, 10, 5); // 將紅色設置為 15，將綠色設置為 10，將藍色設置為 5

功能名稱: backLight

參數 boolean 開/關 ON 打開背光

OFF 關閉背光

回傳值 無

打開或關閉 LCD 時鐘的背光。

(例子)

board.setBackLight(15, 10, 5); // 將紅色設置為 15，將綠色設置為 10，將藍色設置為 5

board.backLight(ON); //打開背光

board.Timer(1000); // 閒置一秒

clock.backLight(OFF); //關閉背光

★時鐘將使用 setBackLight 中最後指定的顏色打開。

功能名稱: clockBuzzer

參數 word 音調 見 CH2.9 * 6 音符

unsigned long 時間 持續時間(毫秒)

回傳值 無

使用 LCD 時鐘的蜂鳴器播放音樂。

(例子)

board.clockBuzzer(BZR_CS4, 2000);

23

功能名稱: GetHour

參數 無

回傳值 int 小時

從 LCD 時鐘中檢索小時。

功能名稱: GetMinute

參數 無

回傳值 int 分鐘

從 LCD 時鐘中檢索分鐘。

功能名稱: GetYear

參數 無

回傳值 int 年份

從 LCD 時鐘中檢索年份。

功能名稱: GetMonth

參數 無

回傳值 int 月份

從 LCD 時鐘中檢索月份。

功能名稱: GetDay

參數 無

回傳值 int 日

從 LCD 時鐘中檢索日。

功能名稱: GetTemperature

參數 無

回傳值 float 溫度 (℃)

從 LCD 時鐘中檢索溫度。

24

功能名稱: GetAlarmHour

參數 無

回傳值 int 鬧鐘時間(小時)

從 LCD 時鐘中檢索鬧鐘時間(小時)。

功能名稱: GetAlarmMinute

參數 無

回傳值 int 鬧鐘時間(分鐘)

從 LCD 時鐘中檢索鬧鐘時間(分鐘)。

功能名稱: isAlarmTime

參數 無

回傳值 boolean 檢查當前時間是否與鬧鐘時間一致。

回傳 LCD 時鐘的時間是否與鬧鐘時間匹配。 此功能回傳的值與 LCD 時鐘的板載警報開

關和 STOP 按鈕相關聯。
 TRUE FALSE

音調 見 * 3 ・總是 False

開啟 ・當前時間與鬧鐘時間一致
・當前時間與鬧鐘時間不符

・當 TRUE 時,按下 STOP 按鈕

休眠

・當前時間與鬧鐘時間一致

・當前時間等於鬧鐘時間+5 的倍

數

・當前時間與鬧鐘時間不符

・當 TRUE 時,按下 STOP 按鈕

(例子)

for(;;) {
 if(board.isAlarmTime()) {
 board.clockBuzzer(BZR_CS4, 2000);
 }
}

25

功能名稱: sleep

參數 無

回傳值 無

SLEEP_MODE_PWR_SAVE 將激活時鐘的省電模式。

功能名稱: GetOnboardLightSensor

參數 無

回傳值 int 0 ~ 1023

檢索板載光感應器的值。

功能名稱: GetBatteryVoltage

參數 無

回傳值 float 電壓[伏特]

檢索連接到電路板的電池的電壓。

26

2.9. 常數

* 1 伺服馬達端口

值 端口

PORT_D2 D2

PORT_D4 D4

PORT_D7 D7

PORT_D8 D8

PORT_D9 D9

PORT_D10 D10

PORT_D11 D11

PORT_D12 D12

*2 按鈕端口

值 端口

PORT_A0 A0

PORT_A1 A1

PORT_A2 A2

PORT_A3 A3

*3 數字端口

值 端口

PORT_A0 A0

PORT_A1 A1

PORT_A2 A2

PORT_A3 A3

PORT_A4 A4

PORT_A5 A5

*4 模似端口值

值 端口

PORT_A0 A0

PORT_A1 A1

PORT_A2 A2

PORT_A3 A3

PORT_A4 A4

PORT_A5 A5

PORT_A6 A6

PORT_A7 A7

*5 部件 ID

值 部件

PIDOPEN 斷開連接

PIDLED LED

PIDBUZZER 蜂鳴器

PIDLIGHTSENSOR 光感應器

PIDSOUNDSENSOR 聲音感應器

PIDIRPHOTOREFLECTOR 紅外光反射器

PIDACCELEROMETER 加速度計

PIDTOUCHSENSOR 觸摸感應器

PIDPUSHSWITCH 按鈕

PIDIRRECEIVER 紅外接收器

PIDGYROSCOPE 陀螺儀 (*)

PIDTEMPERATURESENSOR 溫度感應器

PIDULTRASONICSENSOR 超聲波感應器

PIDCOLORSENSOR 顏色感應器 (*)

(*): I2C device

28

*6 音符值

值 音符 頻 率

(Hz)
 值 音符 頻 率

(Hz)
 值 音符 頻 率

(Hz)

BZR_C3 Do 130 BZR_C5 Do 523 BZR_C7 Do 2093

BZR_CS3 Do # 139 BZR_CS5 Do # 554 BZR_CS7 Do # 2217

BZR_D3 Re 147 BZR_D5 Re 587 BZR_D7 Re 2349

BZR_DS3 Re # 156 BZR_DS5 Re # 622 BZR_DS7 Re # 2489

BZR_E3 Mi 165 BZR_E5 Mi 659 BZR_E7 Mi 2637

BZR_F3 Fa 175 BZR_F5 Fa 698 BZR_F7 Fa 2794

BZR_FS3 Fa # 185 BZR_FS5 Fa # 740 BZR_FS7 Fa # 2960

BZR_G3 So 196 BZR_G5 So 784 BZR_G7 So 3136

BZR_GS3 So # 208 BZR_GS5 So # 831 BZR_GS7 So # 3322

BZR_A3 La 220 BZR_A5 La 880 BZR_A7 La 3520

BZR_AS3 La # 233 BZR_AS5 La # 932 BZR_AS7 La # 3729

BZR_B3 Ti 247 BZR_B5 Ti 988 BZR_B7 Ti 3951

BZR_C4 Do 262 BZR_C6 Do 1047 BZR_C8 Do 4186

BZR_CS4 Do # 277 BZR_CS6 Do # 1109 BZR_S Silence 0

BZR_D4 Re 294 BZR_D6 Re 1175

BZR_DS4 Re # 311 BZR_DS6 Re # 1245

BZR_E4 Mi 330 BZR_E6 Mi 1319

BZR_F4 Fa 349 BZR_F6 Fa 1397

BZR_FS4 Fa # 370 BZR_FS6 Fa # 1480

BZR_G4 So 392 BZR_G6 So 1568

BZR_GS4 So # 415 BZR_GS6 So # 1661

BZR_A4 La 440 BZR_A6 La 1760

BZR_AS4 La # 466 BZR_AS6 La # 1865

BZR_B4 Ti 494 BZR_B6 Ti 1976

29

3. 編程

在使用 Studuino 功能庫編程時，您必須牢記這些部分中的要點。

3.1. Arduino 語言
使用 Arduino 語言時，用戶必須自己定義設置和循環功能。 setup 功能只在程序啟動時調用一

次。 循環功能用於無限次重複定義的過程。
// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

}

3.2. Studuino 物件

為了使用 Studuino 庫，您必須通過將 Studuino 對象放在全局變量中來創建 Studuino 板的圖

像。

// Studuino 板圖像。 每個程序只製作一個。

Studuino board; ★ Studuino

StuduinoMini board; ★ Studuino mini

3.3. 包括標頭檔
這些功能數供您的伺服電機、加速度計、陀螺儀、IR 接收器和顏色傳感器使用。 除了 Studuino

的標頭檔之外，您還必須包含這些頭文件。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

30

3.4. 編程示例

以下部分包含每個部件的編程示例。

3.4.1. 直流馬達
將直流馬達連接到 Studuino 上的 M1 和 M2，並使用 Arduino IDE 加載以下程序。

汽車將前進一秒鐘，然後倒退一秒鐘。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

 board.InitDCMotorPort(PORT_M1); // 初始化端口 M1 以用於直流馬達

 board.InitDCMotorPort(PORT_M2); // 初始化端口 M2 以用於直流馬達

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

 board.Move(FORWARD, 254, 1000, BRAKE); // 向前行駛一秒鐘然後停下

 board.Move(FORWARD, 254, 1000, BRAKE); // 倒車一秒鐘然後停止

 // 順時針旋轉直流馬達 M1 1 秒後停止

 board.DCMotorPower(PORT_M1, 254); // 設置直流馬達 M1 的速度

 board.DCMotorControl(PORT_M1, NORMAL); // 開始順時針旋轉直流馬達 M1

 board.Timer(1000); // 等待一秒鐘

 board.DCMotorControl(PORT_M1, BRAKE); // 停止直流馬達 M1

 for (;;) {} // 無限循環以防止程序從頂部重新開始

}

31

3.4.2. 伺服馬達
將伺服馬達連接到 Studuino 上的 D10、D11 和 D12，並使用 Arduino IDE 加載以下程序。 所

有伺服馬達將初始化為 90°。 程序將等待三秒鐘，然後將所有三個伺服馬達同時轉動到 90°、

180° 和 0°。 然後它將再等待三秒鐘，然後將伺服馬達 D10 旋轉到 180°。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

 board.InitDCMotorPort(PORT_D10); // 初始化端口 D10 以用於伺服馬達

 board.InitDCMotorPort(PORT_D11); // 初始化端口 D11 以用於伺服馬達

 board.InitDCMotorPort(PORT_D12); // 初始化端口 D12 以用於伺服馬達

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

// 初始化伺服馬達角度為 90 度

byte connector[] = { PORT_D10, PORT_D11, PORT_D12 };

byte degree[] = { 90, 90, 90 };

byte number = sizeof(connector) / sizeof(byte); // 將設置角度的端口數

 board.AsyncServomotors(connector, degree, number);

 // 用家可以使用它來添加延遲，直到伺服馬達旋轉

 board.Timer(1000);

 board.Timer(3000); // 等待 3 秒

// 將連接到端口 D10、D11 和 D12 的伺服馬達設置為 90、180 和 0 度

degree[0] = 90;

degree[1] = 180;

degree[2] = 0;

 // 一旦此功能完成運行，伺服馬達將達到其目標角度

SyncServomotors(connector, degree, number, 10);

 board.Timer(3000); // 等待 3 秒

// 將連接到端口 D10 的伺服馬達設置為 180 度

 board.Servomotor(PORT_D10, 180);

 // 用家可以使用它在他們的伺服電機旋轉之前添加延遲

 board.Timer(1000);

 for (;;) {} // 無限循環以防止程序從頂部重新開始

}

32

3.4.3. 蜂鳴器

將蜂鳴器連接到 Studuino 上的 A0 並使用 Arduino IDE 加載以下程序。 該程序播放“Do”

一秒鐘，播放“So”一秒鐘，然後播放 Twinkle、Twinkle、Little Star。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

 board.InitDCMotorPort(PORT_A0 ,DC); // 初始化端口 A0 以用於蜂鳴器

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

 // 從蜂鳴器播放一秒音符

 board.Buzzer(PORT_A0, BZR_C5, 1000);

 board.Timer(1000); // 等待 1 秒

 // 從蜂鳴器播放一秒音符

 board.BuzzerControl(PORT_A0, ON, BZR_G5);

 board.Timer(1000);

 board.BuzzerControl(PORT_A0, OFF, 0); // 設置為 OFF 時忽略最後一個參數

 board.Timer(1000); // 等待 1 秒

 // 從蜂鳴器中播放一段旋律

word myPitches[] = { BZR_C5, BZR_C5, BZR_G5, BZR_G5, BZR_A5, BZR_A5, BZR_G5 };

byte number = sizeof(myScales) / sizeof(word); // 要播放的音符數

float myBeats[] = { 1, 1, 1, 1, 1, 1, 1 }; // 節奏

board.Melody (PORT_A0, myPitches, myBeats, number, TEMPO90);

 for (;;) {} // 無限循環以防止程序從頂部重新開始

}

33

3.4.4. LED

將 LED 連接到 Studuino 上的 A1 和 D9 並使用 Arduino IDE 加載以下程序。 LED A1 將閃

爍 3 次，然後 LED D9 緩慢亮起。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

 board.InitDCMotorPort(PORT_A1 ,DC); // 初始化端口 A0 以用於 LED

 board.InitDCMotorPort(PORT_D9); // 初始化端口 D9 以用於 LED

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

 // 閃爍 LED A1 3 次

 for (int i = 0;i < 3;i++) {

 board.LED(PORT_A1, ON); // 打開 LED A1

 board.Timer(1000); // 等待 1 秒

 board.LED(PORT_A1, OFF); // 打開 LED A1

 board.Timer(1000); // 等待 1 秒

}

// 緩慢打開 LED D9

board.Gradation(PORT_D9, 0);

 for (int i = 0;i < 255;i++) {

 board.Gradation(PORT_D9, i);

 board.Timer(100);

 }

 for (;;) {} // 無限循環以防止程序從頂部重新開始

}

34

3.4.5. 感應器
① 常規感應器

將觸摸感應器連接到 A1，將聲音感應器連接到 A2，將紅外光反射器連接到 A3，將加速度感

應器連接到 A4/A5，將光感應器連接到 A6，然後加載以下程序。 加載程序後，轉到 Arduino

IDE 中的工具並選擇串行監視器以打開串行監視器，它會顯示每個傳感器的值。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

 board.InitSensorPort(PORT_A0, PIDPUSHSWITCH);

 board.InitSensorPort(PORT_A1, PIDTOUCHSENSOR);

 board.InitSensorPort(PORT_A2, PIDSOUNDSENSOR);

 board.InitSensorPort(PORT_A3, PIDIRPHOTOREFLECTOR);

 board.InitSensorPort(PORT_A4, PIDACCELEROMETER);

 board.InitSensorPort(PORT_A5, PIDACCELEROMETER);

 board.InitSensorPort(PORT_A6, PIDLIGHTSENSOR);

 // 開始串行輸出

 Serial.begin(9600);

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

// 每 100 毫秒檢索一次光感應器值並輸出到串行監視器

for (;;) {

 byte pVal = board.GetPushSwitchValue(PORT_A0);

 byte tVal = board.GetTouchSensorValue(PORT_A1);

 int sVal = board.GetSoundSensorValue(PORT_A2);

 int iVal = board.GetIRPhotoreflectorValue(PORT_A3);

 int xVal = board.GetAccelerometerValue(X_AXIS);

 int yVal = board.GetAccelerometerValue(Y_AXIS);

 int zVal = board.GetAccelerometerValue(Z_AXIS);

 int lVal = board.GetLightSensorValue(PORT_A6);

 Serial.print("button:"); Serial.print(pVal); Serial.print("\t");

 Serial.print("touch:"); Serial.print(tVal); Serial.print("\t");

 Serial.print("sound:"); Serial.print(sVal); Serial.print("\t");

 Serial.print("ir:"); Serial.print(iVal); Serial.print("\t");

 Serial.print("x:"); Serial.print(xVal); Serial.print("\t");

 Serial.print("y:"); Serial.print(yVal); Serial.print("\t");

 Serial.print("z:"); Serial.print(zVal); Serial.print("\t");

 Serial.print("light:"); Serial.print(lVal); Serial.println();

 board.Timer(100);

}

}

35

② 可選配件：超聲波感應器、溫度感應器、陀螺儀

將超聲波感應器連接到 A0/A1，將溫度感應器連接到 A2，將陀螺儀連接到 A4/A5，然後使用

Arduino IDE 加載以下程序。 加載程序後，轉到 Arduino IDE 中的工具並選擇串行監視器以打

開串行監視器。 串行監視器向您顯示每個傳感器的值。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

board.InitSensorPort(PORT_A0, PORT_A1, PIDULTRASONICSENSOR);

board.InitSensorPort(PORT_A2, PIDTEMPERATURESENSOR);

board.InitI2CPort(PIDGYROSCOPE);

 // 開始串行輸出

 Serial.begin(9600);

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

// 每 100 毫秒檢索一次光感應器值並輸出到串行監視器

int uVal = board.GetUltrasonicSensorValue(PORT_A0, PORT_A1);

int tVal = board.GetTemperatureSensorValue(PORT_A2);

int xVal = board.GetGyroscopeValue(X_AXIS);

int yVal = board.GetGyroscopeValue(Y_AXIS);

int zVal = board.GetGyroscopeValue(Z_AXIS);

int gxVal = board.GetGyroscopeValue(GX_AXIS);

int gyVal = board.GetGyroscopeValue(GY_AXIS);

int gzVal = board.GetGyroscopeValue(GZ_AXIS);

Serial.print("ultrasonic:"); Serial.print(uVal); Serial.print("\t");

Serial.print("temperature:"); Serial.print(tVal); Serial.print("\t");

Serial.print("x:"); Serial.print(xVal); Serial.print("\t");

Serial.print("y:"); Serial.print(yVal); Serial.print("\t");

Serial.print("z:"); Serial.print(zVal); Serial.print("\t");

Serial.print("gx:"); Serial.print(gxVal); Serial.print("\t");

Serial.print("gy:"); Serial.print(gyVal); Serial.print("\t");

Serial.print("gz:"); Serial.print(gzVal); Serial.println();;

board.Timer(100);

}

36

③ 可選部件：IR 接收器

將 IR 接收器連接到 Studuino 上的 A0 並使用 Arduino IDE 加載以下程序。 加載程序後，轉

到 Arduino IDE 中的工具並選擇串行監視器以打開串行監視器。 串行監視器向您顯示每個感

應器的值。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

board.InitSensorPort(PORT_A0, PIDIRRECEIVER); // 感應器輸入設置

 // 開始串行輸出

 Serial.begin(9600);

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

// 每 100 毫秒檢索一次光感應器值並輸出到串行監視器

unsigned long ir = board.GetIRReceiverValue();

if(ir != 0) {

 Serial.print("IR receive:"); Serial.print(ir, HEX); Serial.println();

}

board.Timer(100);

}

37

④ 可選部件：顏色感應器

將顏色感應器連接到 Studuino 上的 A4/A5 並使用 Arduino IDE 加載以下程序。 加載程序後，

轉到 Arduino IDE 中的工具並選擇串行監視器以打開串行監視器。 串行監視器向您顯示每個

感應器的值。
#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

board.InitI2CPort(PIDCOLORSENSOR); // 啟動顏色感應器

 // 開始串行輸出

 Serial.begin(9600);

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

// 每 100 毫秒檢索一次光感應器值並輸出到串行監視器

unsigned int rVal = board.GetColorSensorValue(VALUE_RED);

unsigned int gVal = board.GetColorSensorValue(VALUE_GREEN);

unsigned int bVal = board.GetColorSensorValue(VALUE_BLUE);

unsigned int cVal = board.GetColorSensorValue(VALUE_CLEAR);

double x, y;

board.GetColorSensorXY(&x, &y);

Serial.print("red:"); Serial.print(rVal); Serial.print("\t");

Serial.print("green:"); Serial.print(gVal); Serial.print("\t");

Serial.print("blue:"); Serial.print(bVal); Serial.print("\t");

Serial.print("clear:"); Serial.print(cVal); Serial.print("\t");

Serial.print("X:"); Serial.print(x); Serial.print("\t");

Serial.print("Y:"); Serial.print(y); Serial.println();

board.Timer(100);

}

38

⑤ 可選配件：藍牙模組

在不連接任何東西的情況下，使用 Arduino IDE 加載以下程序。 加載後，將 D0 和 D1 上的

藍牙通信引腳插入 A0-A7 中任何打開的傳感器端口的電源。 打開應用程序，連接您的

Studuino，並發送值以打開和關閉引腳 13 上 Studuino 的板載 LED。

#include <Arduino.h > // 基本標頭檔

#include <Servo.h> // 伺服馬達標頭檔

#include <Wire.h> // I2C 設備標頭檔

#include <MMA8653.h> // 加速度感應器標頭檔

#include <MPU6050.h> // 陀螺儀標頭檔

#include <IRremoteForStuduino.h> // 紅外接收器標頭檔

#include <ColorSensor.h> // 顏色感應器標頭檔

#include "Studuino.h" // Studuino 標頭檔

// Studuino 板圖像。 每個程序只製作一個。

Studuino board;

// 在程序開始時調用一次。 主要用於初始化。

void setup() {

 // 使用初始化功能初始化連接部件的 Studuino 端口

board.InitBluetooth();

pinMode(13, OUTPUT);

}

// 這個功能運行一個無限循環。 如：主要流程。

void loop() {

// 從應用程序中獲取值

board.UpdateBluetooth();

// 根據接收到的值打開或關閉 LED

if(board.GetBTCommandIDState(BT_ID_01)) {

 digitalWrite(13, HIGH);

}

if(board.GetBTCommandIDState(BT_ID_02)) {

 digitalWrite(13, LOW);

}

board.Timer(100);

}

39

A. 將直流馬達連接到 Studuino

請按照以下說明組裝您的汽車：

(3) 使用積木製作後輪。

(4) 現在將您的直流馬達和電池盒插入您的 Studuino。

M1: 右直流馬達

M2: 左直流馬達

電源：電池盒

(1) 如下圖所示將輪子安裝到直流馬達上。
★ 做對稱的一對。

(2) 將兩個直流馬達連接到 Studuino 支架的底部。

(5) 將電池盒安裝在 Studuino 支架上以保持其固定。

